

||Jai Sri Gurudev|| Sri Adichunchanagiri Shikshana Trust (R)

Module Wise Plan

Course Title: Verilog	HDL		Course Code: 18EC56	
Semester: V 'A'	Academic Year: 2021-22	Total hrs.: 40	Hrs./Week: 03	
Int. Exam Hrs.: 01	Internal Evaluation Max. Marks: 40			
Ext. Exam Hrs.: 03	Ext. Exam Max.Marks: 60			
Lesson Plan Author	/ Desgn. / Dept.: LATHA S / Ass	istant Professor/ E	CE	

Course Objectives:

This course will enable students to:

- Designing digital circuits, behavioral and RTL modeling of digital circuits using Verilog HDL.
- Verifying these models and synthesizing RTL models to standard cell libraries and FPGAs
- Provide better understanding of the different technologies related to HDLs, construct, compile and execute Verilog HDL programs using provided software tools.
- Design digital components and circuits that are testable, reusable and synthesizable.

Course Outcomes:

After studying this course, students will be able to:

- Understand the usage of Verilog Hardware Description Language (HDL) in Semiconductor Technology and Design flow of Digital Circuits.
- Interpret the various constructs in logic synthesis and perform timing and delay Simulation
- Design and verify the functionality of digital circuit/system using test benches.
- Develop Verilog programs in gate, dataflow (RTL), behavioural and switch modelling levels of Abstraction.
- Analyze the programs more effectively using Verilog tasks, functions and directives.

DAYS	Module No. & Title	SUBTOPICS	СО
1	Module 1: Overview of	Evolution of CAD	CO1
2	Digital Design	Emergence of HDLs, Typical HDL-flow	CO1
3	with Verilog HDL	Why Verilog HDL? trends in HDLs	CO1
4	&	Top-down design methodology	CO1
5	Hierarchical Modeling	Bottom-up design methodology	CO1
6	Concepts	Examples for top-down designing	CO1
7		Differences between modules and module instances	CO2

8		Simulation - design block, stimulus block	CO2
9		Basic Concepts – Introduction to Structure	CO3
10	Module 2: Basic Concepts & Modules and Ports	Lexical conventions	CO3
11		Data types, System tasks	CO3
12		Compiler directives	CO3
13		Module definition	CO3
14		Port declaration	CO3
15		Connecting ports	CO3
16		Hierarchical name referencing	CO3
17		Basic Verilog gate primitives	
18		Description of and/or and buf /not type gates	CO4
19	Module 3:	Rise, fall and turn-off delays	CO4
20	Gate-Level	Min, max, and typical delays	CO4
21	& Dataflow	Continuous assignments	CO4
22	Modeling	Delay specification	CO4
23		Expressions, Operators, operands	CO4
24		Operator types	CO4
25		Structured procedures, Initial and always	CO4
26		Blocking and non-blocking statements	CO4
27	Module 4:	Delay control, Generate statement	CO4
28	Behavioral	Event control, Conditional statements	CO4
29	Modeling, Tasks and	Multiway branching, loops	CO4
30	Functions:	Sequential blocks, parallel blocks.	CO4
31		Differences between tasks and functions	CO5
32		Declaration, invocation, automatic tasks and functions	CO5
33		Procedural continuous assignments	CO5
34		overriding parameters,	CO5
35	Module 5:	conditional compilation and execution	CO5
36	Useful Modeling	useful system tasks	CO5
37	Techniques & Logic Synthesis with Verilog	Logic Synthesis	CO2
38		Impact of logic synthesis	CO2
39		Verilog HDL Synthesis	CO2
40		Synthesis design flow, Verification of Gate-Level netlist	CO2

Reference / Textbook Details

Sl.No	Title of Book	Author	Publication	Edition
1	Verilog HDL: A Guide to Digital Design and Synthesis	Samir Palnitkar	Pearson Education	2 nd
2	VHDL for Programmable Logic	Kevin Skahill	PHI/Pearson education	2 nd
3	The Verilog Hardware Description Language	Donald E. Thomas, Philip R. Moorby	Springer Science+Busines s Media, LLC	5 th
4	Advanced Digital Design with the Verilog HDL	Michael D. Ciletti	Pearson (Prentice Hall)	2^{nd}
5	Design through Verilog HDL	Padmanabhan, Tripura Sundari	Wiley	Latest

[LATHA S]
Faculty In-Charge

Date:

Dept. of Electronics & Communication Engg.

SJB Institute of Technology Bengaluru-56006')